News
24. November 2020

»Switch2Save« zeigt smartes Glas

Lesezeit: ca. 3 Minuten
Großflächig verglastes Gebäude (Foto: Finn Hoyer, © Fraunhofer FEP)

Elektrochromie basiert auf Materialien, die ihre Lichtdurchlässigkeit durch Anlegen einer elektrischen Spannung ändern, während thermochrome Zellen auf Materialien basieren, die ihre Infrarot-Reflexionseigenschaften mit steigender Temperatur ändern. Die von der EU geförderte Initiative Switch2Save hat das Ziel, elektrochrome und thermochrome Systeme zu kombinieren und weiterzuentwickeln, um leichte, energieeffiziente Isolierglaseinheiten zu realisieren, die für große Fenster und Glasfassaden geeignet sind.

Schritt 1: Schaltprotokolle entwickeln

Ein erster Schritt im Rahmen des Projekts war die Entwicklung von Schaltprotokollen für die TC/EC-Zellen, um das Energiesparpotenzial zu maximieren und eine Schaltstrategie für die Isolierglaseinheiten zu definieren. Diese Schaltprotokolle ermöglichen es, den Zustand einer Isolierglaseinheit von hell nach dunkel zu steuern und dabei eine Reihe von gebäudebezogenen Parametern zu berücksichtigen. Der optimale Zustand der Isolierglaseinheit sollte sowohl den visuellen und thermischen Komfort als auch Energieeinsparungen gewährleisten.

Um die optimalen Schaltprotokolle zu definieren, entwickelten die Projektpartner eine allgemeine Schaltstrategie für ein virtuelles Bürogebäude mit drei Automatisierungsstufen: vollautomatischer, halbautomatischer und vordefinierter Betrieb von Isolierglaseinheiten. Die indikative Umsetzung der automatischen Schaltstrategie in den Switch2Save-Isolierglaseinheiten in zwei verschiedenen Klimazonen (Athen und Stockholm) lässt auf ein variables Heiz-/Kühl-Energiesparpotenzial zwischen 10 und 70 % im Vergleich zu typischen dreifach verglasten Fenstern mit Innenbeschattung schließen.

Dieses Energiesparpotenzial hängt nicht nur von der jeweiligen Klimazone ab, sondern auch von der Betriebsweise, den Gebäudeeigenschaften und dem Fenster-Wand-Verhältnis des jeweiligen Gebäudes. Projektkoordinator Dr. John Fahlteich, Fraunhofer FEP, ist begeistert: »Die entwickelten Modelle und Simulationen zeigen, dass dieses Schaltprotokoll in der Lage ist, das Schaltverhalten unserer neuen Isolierglaseinheiten zu optimieren. Dies führt zu einer größtmöglichen Reduzierung des Primärenergieverbrauchs während der visuelle und thermische Komfort gewährleistet oder sogar verbessert wird.«

Schritt 2: Protokolle testen

Im nächsten Schritt werden die Protokolle in den beiden Demo-Gebäuden des Switch2Save-Projekts implementiert und in das jeweilige Gebäudeautomatisierungssystem integriert. Dann wird man das Potenzial in den beiden repräsentativen Gebäuden demonstrieren – dem zweitgrößten Krankenhaus Griechenlands in Athen und einem Bürogebäude in Uppsala, Schweden.

Dort wird das Switch2Save-Konsortium 50 Fenster und 200 m² Glasfassadenfläche durch die neuen Isolierglaseinheiten ersetzen und einen vollständigen »Vorher-Nachher«-Vergleich des Energiebedarfs für einen Jahreszyklus in beiden Gebäuden durchführen. Die Ergebnisse werden die flächendeckende Einführung von smarten Glastechnologien beschleunigen und das europäische Ziel eines CO2-neutralen Gebäudebestandes in der EU bis 2050 maßgeblich unterstützen.

Der Aufbau eines Fensters mit Switch2Save-Technologie: Denkbar sind sowohl Varianten mit elektro- als auch mit thermochromer Beschichtung sowie eine Kombination beider Technologien in einem Fenster. (Foto: Fraunhofer)

Update: Fertigung im Rolle-zu-Rolle-Verfahren

Mittlerweile wurden Probleme bei der Fertigung gelöst. Die elektrochrome Beschichtung wird auf einem Foliensubstrat auf Polymer-Basis aufgebracht. Die thermochrome Version hingegen arbeitet mit einem Dünnglas-Substrat. Es werden nasschemische Beschichtungsverfahren sowie Vakuumbeschichtungsverfahren im kosteneffizienten Rolle-zu-Rolle-Betrieb eingesetzt. Die schaltbaren Bauelemente werden anschließend im Vakuum auf ein 4 mm dickes Fensterglas laminiert. Dieses wird schließlich Teil des Verbundfensters.

Die Beschichtungen werden im Rolle-zu-Rolle-Verfahren hergestellt. Mit wenigen 100 µm sind sowohl die elektrochrome Folie als auch das thermochrome Dünnglas-Substrat extrem dünn. (Foto: Fraunhofer)

Das Beschichtungsverfahren ist auch im industriellen Maßstab wirtschaftlich realisierbar. Die elektro- und thermochrom-schaltbaren Elemente sind nur wenige 100 µm dick und weniger als 500 g pro Quadratmeter leicht. Sie verändern damit das Gewicht der Verbundfenster kaum, sodass diese ohne Nachbesserungen an der Gebäudekonstruktion oder Statik in Bestandsgebäuden nachgerüstet werden können.

Geschwungenes Glas und bunte Fenster

Derzeit arbeitet das Projektkonsortium daran, die Technologie weiterzuentwickeln. So erforscht das Expertenteam, wie sich die elektro- und die thermochromen Elemente in einem Verbundfenster miteinander kombinieren lassen, um das Potenzial der Technologie noch besser auszuschöpfen. Weitere Forschungsziele bestehen darin, die Beschichtung auf geschwungenen Glasformen aufzubringen und zu den bestehenden Farbtönen Blau und Grau weitere Farben zu ergänzen.

www.fep.fraunhofer.de